

I NSTRUCTI ONS MANUAL TEMPERATURE DIGITAL PANEL METER

CODE: 30727005 EDITION: 11-06-2007

MODEL ALPHA-T

DITELD
ECF MODBUS-RTU PROTOCOL COMPATI BLE

I NTRODUCTI ON TO THE KOSMOS SERIES

This manual does not constitute a formal agreement. All information given in this manual is subject to change without notice.

The KOSMOS SERIES brings a new philosophy in digital panel instrumentation which is expressed by multipurpose, modular-concept devices providing a rich array of basic functions and advanced capabilities.

With a fully MODULAR DESIGN, it is possible to implement a wide variety of applications by only adding the adequate options.

Intelligence within allows the meter to recognize the options installed and ask for the necessary parameters to properly function within desired margins. The parameters related to non-installed options are removed from the program routines.

The instruments CALIBRATION is made at the factory eliminating the need for adjustment potentiometers.
Any circuit or option liable to be adjusted incorporates a memory where calibration parameters are stored, making it possible the optional cards be totally interchangeable without need of any subsequent adjust.

Valid for instruments from s/n 207926

Custom CONFIGURATION for specific applications can be made quickly and easily through five front panel keys, following structured choice menus aided by display prompts at each programming step.

Other features of the KOSMOS family include :

- CONNECTIONS via plug-in terminal blocks without screws and CLEMP-WAGO clips cable retention system.
- DIMENSIONS

Models ALPHA \& BETA $96 \times 48 \times 120 \mathrm{~mm}$ DIN 43700 Models MICRA \& JR/JR20 96x48x60 mm DIN 43700

- CASE MATERIAL UL-94 V0-rated polycarbonate.
- PANEL INSTALLATION without screws by means of single part fastening clips.
- IMPERMEABILITY of the front panel IP65 (Indoor Use).

[^0]
DIGITAL PANEL INSTRUMENT

INDEX

1. MODEL ALPHA-T OVERVIEW 4-5
1.1. - KEYBOARD AND DISPLAY DESCRIPTION 6
2. GETTING STARTED 8
2.1 - POWER AND CONNECTORS 9
2.2 - PROGRAMMING INSTRUCTIONS 11
2.3 - INPUT CONFIGURATION 13
2.4 - DISPLAY CONFIGURATION 17
3. FRONT PANEL AND REMOTE FUNCTIONS
3.1 - KEYBOARD FUNCTIONS 18
3.2 - REMOTE INPUTS 19
3.3 - TABLE OF PROGRAMMABLE FUNCTIONS 20
3.4 - PROGRAM REMOTE INPUTS 22
3.5 - PROGRAMMING LOCK OUT. ACCESS LEVELS 24
4. OUTPUT OPTIONS 25
4.1-NEW FUNCTIONS 26
5. TECHNICAL SPECIFICATIONS 28
5.1 - DIMENSIONS AND MOUNTING 30
6. WARRANTY 31
7. DECLARATION OF CONFORMITY 32

1. MODEL ALPHA-T OVERVI EW

Abstract

The ALPHA-T model incorporates new technical and functional characteristics including programmable remote inputs and a variety of output performance capabilities that provides an extraordinary flexibility to adapt to a wide range of indication and control needs.

The ALPHA-T model is a digital indicator for temperature measurement in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ that can be connected to several types of transducers such as Pt100 and thermocouples J, K, T, R, S and E .
The meter's configuration for a particular input type is made entirely by software.

Display readout in the centigrade or the Fahrenheit scale and resolution in degrees or tenths of degree are selectable in a single software step.
In addition, a programmable temperature offset from -99 to +99 counts of display allows the meter be adapted to match desired application.
More programmable options include 10 levels of input filtering.
The basic instrument is a soldered assembly composed of the main board, the display and keyboard module, the power filtering circuit, the A/D converter circuit and the input card

Standard features of the basic instrument include the reading of the input variable, max and min readings detection, remote hold operation and a full complement of programmable logic functions.

In addition, a variety of plug-in output cards can be installed at any time to meet further system requirements:

COMMUNICATION
RS2 Serial RS232C
RS4 Serial RS485
BCD BCD 24V/TTL
CONTROL
ANA Analogue $4-20 \mathrm{~mA}, 0-10 \mathrm{~V}$
2RE 2 Relays SPDT 8A
4RE 4 Relays SPST 5A*
4OP 4 Open-collector NPN outputs
4OPP 4 Open-collector PNP outputs
All output options are isolated from signal and power.
*From no 05397

This instrument conforms to the following directives: 89/336/CEE and 73/23/CEE
Caution: Read complete instructions to ensure safety protections.

RUN MODE: FRONT-PANEL FUNCTIONS

2. GETTI NG STARTED

PACKI NG CONTENTS

- Instructions manual in English.
- Digital panel meter model Alpha-T.
- Accessories for panel mounting (sealing gasket and fixing clips).
- Accessories for wiring connections (plug-in terminal block connectors with a fingertip key).
- Wiring label stuck to the plastic case.
- One set of engineering units labels.
\checkmark Check the packaging contents.

CONFIGURATION

Power supply (pages 9 \& 10)

- The instruments with $115 / 230 \mathrm{~V}$ AC power supply, are set by default for a supply voltage of 230 V (USA market 115 V AC).
- The instruments with $24 / 48 \mathrm{~V}$ AC power supply, are set by default for a supply voltage of 24 V .
- Instruments supplied for 10-30V DC can be powered from any voltage between 10 and 30 V DC without need of making changes.
$\checkmark \quad$ Check wiring label before applying power to the instrument.

Programming instructions (pages $11 \& 12$)

- The software is divided into several independently accessible modules for configuration of the input, the display, the setpoint outputs, the analog output, the communication output and the logic inputs.
\checkmark Read carefully this section.
Input types (pages 13 to 16)
\checkmark Verify input configuration before connecting the input signal.

Programming Lock-out (page 23)

- The instrument is set at the factory with the program routines totally accessible.

Warning! Keep your unlock code in a secure place. If you lost it, it is possible to reset it (page 25).

2.1 - Power supply

Should any hardware modification be performed, remove the electronics from the case as shown in figure 9.1.

115/ $\mathbf{2 3 0}$ V AC: The instruments with $115 / 230 \mathrm{~V}$ AC power, are shipped from the factory for 230 V AC (USA market 115 V AC), see figure 9.2 . To change supply voltage to 115 V AC, set jumpers as indicated in figure 9.3 (see table 1). The wiring label should be modified to match new setups.
24/48 V AC: The instruments with 24/48 V AC power supply, are shipped from the factory for 24 VAC , see figure 9.3 To change supply voltage to 48 VAC , set jumpers as indicated in figure 9.2 (see table 1). The wiring label should be modified to match new setups.
10-30V DC: The instruments for $10-30 \mathrm{~V}$ DC power supply are prepared to withstand any voltage between 10 and 30 V without need of wiring changes.

Fig. 9.1. Supply voltage 230 V or 48 V AC

Fig. 9.1. Supply voltage 115 V or 24 V AC

POWER CONNECTI ON - CN1

AC VERSIONS
PIN 1 - AC HI
PIN 2 - GND (GROUND)
PIN 3 - AC LO (NEUTRAL)
DC VERSIONS
PIN 1 - DC POSITIVE
PIN 2 - N/C (not connected)
PIN 3 - DC NEGATIVE

INSTALLATION

To meet the requirements of the directive EN61010-1, where the unit is permanently connected to the mains supply it is obligatory to install a circuit breaking device easily reachable by the operator and clearly marked as the disconnect device.

WARNING

In order to guarantee electromagnetic compatibility, the following guidelines for cable wiring must be followed:

- Power supply wires must be routed separated from signal wires. Never run power and signal wires in the same conduit.
- Use shielded cable for signal wiring and connect the shield to ground of the indicator ($p \mathrm{in} 2 \mathrm{CN1}$).
- \quad The cable section must be $\geq 0.25 \mathrm{~mm}^{2}$

If not installed and used according to these instructions,

 protection against hazards may be impaired.
CONNECTORS

To perform wiring connections, remove the terminal block from the meter's connector, strip the wire leaving from 7 to 10 mm exposed and insert it into the proper terminal while pushing the fingertip down to open the clip inside the
 connector as indicated in the figure.
Proceed in the same manner with all pins and plug the terminal block into the corresponding meter's connector.
Each terminal accept cables of section between $0.08 \mathrm{~mm}^{2}$ and $2.5 \mathrm{~mm}^{2}$ (AWG $26 \div 14$). The blocks provide removable adaptors into each terminal to allow proper fastening for cable sections of $<0.5 \mathrm{~mm}^{2}$.

2.2 - Programming instructions

When power is applied to the instrument, the display briefly illuminates all segments and LED's then shows the software version and finally enters in the normal reading mode.

Press ENTER to enter in the programming mode. The display shows the indication "-Pro-". The programming software is divided into 6 modules. From the -Pro- stage, press repeatedly $>$ to cycle around the existing modules

1. $\mathrm{Cn} \operatorname{InP}=$ Input configuration
2. CndSP $=$ Display configuration
3. SetP $=$ Setpoints
4. Anout $=$ Analogical output
5. rSout $=$ RS output
6. LoGIn $=$ Remote inputs

The modules 3,4 and 5 will only be displayed if the option is installed. Read the manuals related to these options to configure them.

The figure below shows the programming diagram. You can accede to each module by pressing ENTER when its name appears in the display.

In the diagram, the key \longrightarrow will allow you to cycle through the modules and the key enter will be used to input data and go to the next step.

From any step of the program routines, a push on ESC returns the meter to the run mode without saving.

The programming instructions are composed by a general description and a series of step-by-step instructions to be followed sequentially. Each menu step is represented by an illustration of the display and keyboard module with indicators (display and LED's), reference [page number . figure number] and a text describing the action of each key at that step.
[page n ㅇ/ figure n ㅇ] Mnemo

In the step-by-step instructions, you are given the action of the three buttons mainly used to program data. The normal procedure at each step is to push on \triangle a number of times to make changes and push on ENTER to validate changes and advance to the next programming step. At the end of a complete menu sequence the meter returns to the run mode saving changes in memory.

In general the following actions can be made during the program mode.
ENTER validate changes and advance to next step
ESC discard changes and go to the run mode
\square
select among a list of available options / shift to next digit to the right
increment digit value

Program module and menu step indicators

With respect to the figures in the step-by-step instructions, the display indications may have the following meanings :
1./ The display shows one of the available options with filled-out segments. That means that the display shows the choice made previously. The use of \square allows to select from available options.
2./ A series of black "8" also represents the display indication of a previous choice, with the difference that it cannot be changed in the current step. If it is already the desired parameter, you may exit from the menu by a push of ESC without making changes or, if wanted to modify it, a push of ENTER advances the meter to the next step where changes are allowed.
3./ A series of white "8" represents any numerical value that is programmed by using keys (increment digit value) and \triangle (advance to the next digit).

[14.1] I nput module

Menu 1A - I nput Selection

[14.2] Access to the menu

[14.3] Type of input

From the run mode, press ENTER to enter in the programming mode (the display shows -Pro- and the LED 'PROG' illuminates). Press \rightarrow to reach the stage represented in figure 14.1 corresponding to the input configuration module.
Press ENTER to accede this module. It is divided into two independent menus to select the input type, units and resolution and program a display offset.

Figure 14.2 shows the indication corresponding to the entry level of the input select menu. The 8's represent any previously programmed input type but cannot be changed at this step.
The following actions are available at this stage :
ENTER Access to the input type selection (fig. 14.3).
Pass to the second menu (1B) to set readout parameters (fig. 15.1).
ESC Exit from this routine and return to the run mode.

Select input type

The display shows the previous configuration [Pt100 = Pt100 sensor, -tC]- = thermocouple type J, -tCK- = thermocouple type K, -tCt- = thermocouple type T,
-tCr- = thermocouple type R, -tCS- = thermocouple type S, -tCE- = thermocouple type E]. Press \longrightarrow to rotate around available options until desired input appears on the display.

[^1]
[15.1] Access to the menu

[15.2] Units

[15.3] Offset

Figure 15.1 shows the entry level of the readout configuration menu where the 8 's represent the previously programmed units and resolution but cannot be changed at this step. The following actions are available at this stage :

Access to change this menu parameters (figs. $15.2 \& 15.3$).
Pass to the first menu (1A) to set input type (fig. 14.2).
Exit from this routine and return to the run mode.

Select units and resolution

The display shows the previous configuration $\left[\mathbf{1}^{\circ} \mathbf{C}, \mathbf{0 . 1} \mathbf{1}^{\circ} \mathrm{C}, \mathbf{1}^{\circ} \mathbf{F}\right.$ or $\left.\mathbf{0 . 1 ^ { \circ }} \mathbf{F}\right]$. Press \checkmark to rotate around available options until desired choice appears on the display.

Enter Save changes and advance to the next step (fig. 15.3).Exit from this routine without saving changes and return to the run mode.

Program the display offset

The previously programmed offset appears on the display with the first digit in flash. To change the value, press \triangle to increment the active digit value (the first digit can only be ' 0 ' or a minus sign). Press $>$ to shift to the next digit to be modified and repeat these operations until desired offset is completed on the display (max values are $\pm 99^{\circ}$ with resolution 1° and $\pm 9.9^{\circ}$ with resolution 0.1°.
The "TARE" LED lights whenever the programmed offset is a non-zero value.

Save changes in memory and return to the run mode.
Exit from this routine without saving changes and return to the run mode.

I nput connections

Refer to wiring guidelines in page 10 .

Instrument's rear view

	Pt100	Thermocouple
PIN $6=$	Not connected $/$	Not connected
PIN $5=$	Pt100 COMM $/$	Not connected
PIN $4=$	Not connected $/$	Not connected
PIN $3=$	Pt100	- TC
PIN 2 $=$	Not connected $/$	Not connected
PIN $1=$	Pt100	+ TC

Input wiring schematic for Pt100 sensor with 3 wires.

Signal wiring schematic for thermocouples J, K, T, R, S and E with 2 wires

2.4 - Display configuration

[17.1] Display module

Menu 2A - Select filter

[17.3] Access to the menu

[17.4] Filter level

From the run mode, press ENTER to enter in the programming mode (the display shows -Pro- and the LED 'PROG' illuminates). Press \triangle twice to reach the stage represented in figure 17.1 corresponding to the display configuration module.
Press ENTER to accede this module. It has only one menu which allows to set an input filter level from 0 to 9 . The effect of incrementing the filter level results in a delay of the display response to quick input variations. Level ' 0 ' means no filter action.

fig. 17.2. Display module diagram

Figure 17.3 shows the indication corresponding to the entry level of the filter select menu. The following actions are available at this stage :

ENTER Access to program filter level (fig. 17.4).
ESC
Exit from this menu and return to the run mode.

Select filter level

The display shows any number from 0 to 9 corresponding to the previously programmed level. Press \longrightarrow to change this parameter if desired (level '0' disables the filter).

Save the entry in the memory and return to the run mode.
(ESC Exit from this menu without saving changes and return to the run mode.

3. FRONT-PANEL AND REMOTE I NPUT FUNCTI ONS

3.1 - Front-panel functions

MAX/MIN. This key is used to call up the peak and valley values contained in memory. Any selected parameter is displayed permanently and continuously updated if no action is taken. First push recalls peak and activates the "MAX" LED.

[18.1] Peak
The second push recalls valley and activates the "MIN" LED.

[18.2] Valley
A third push brings the meter to the normal reading.

TO CLEAR PEAK OR VALLEY MEMORIES :

Press "MAX/MIN" until desired parameter appears on the display. Hold down the "RESET" key and press "MAX/MIN". Release first "MAX/MIN", then "RESET".

LIMIT. During the RUN mode, this key is only operative in case that the instrument incorporates one of the following output options : 2 relays (ref. 2RE), 4 relays (ref. 4RE), 4 NPN transistors (ref. 4OP) or 4 PNP transistors (ref.4OPP).
The first push of "LIMIT" indicates the setpoint 1 in the display and illuminates the LED indicators "LIMIT" and "1" (SET1). Each new stroke of the LIMIT key recall successively the following setpoints to the display and activates the corresponding LED (on the right).

[18.3] Setpoint 1 value
The setpoint values are shown at each push of the "LIMIT" key independently of whether they are enabled or inhibited. 15 seconds after the last key operation or by a push of "LIMIT" from the last setpoint indication, the meter returns to the normal reading.

3.2 - Remote inputs logic functions

The rear connector CN2 provides 4 user programmable opto coupled inputs that can be operated from external contacts or logic levels supplied by an electronic system. Four different functions may be then added to the functions available from the front-panel keys. Each function is associated to one of the CN2 connector pins (PIN 1, PIN 2, PIN 4 and PIN 5) and is activated by applying a falling edge or a low level pulse to the corresponding pin with respect to common (PIN 3).
Each pin can be assigned one of the 19 functions listed on the following pages.

- Default configuration

As shipped from the factory, the CN2 connector allows the TARE, MAX/MIN and RESET operations be made in the same way as from the front-panel keyboard and incorporates one more function: the display HOLD.
The HOLD state, which is acknowledged by the LED "HOLD", freezes the display, the BCD and the analog outputs but does not halt the meter's internal operation nor the alarm outputs. The HOLD state is maintained as long as pin2 is kept to a low level with respect to pin 3.

CN2 : DEFAULT CONFIGURATION

PI N (INPUT)	Function	Number
PIN 1 (INP-1)	RESET	Function no 7
PIN 2 (INP-2)	HOLD	Function nㅇ 9
PIN 3	COMMON	
PIN 4 (INP-4)	-	-
PIN 5 (INP-5)	PEAK/VALLEY	Function nㅇ 6

The external electronics applied to the CN2 connector must be capable of withstanding 40 V and 20 mA present at all terminals with respect to COMMON. In order to guarantee the electromagnetic compatibility, please refer to the instructions given on page 10.

Fig. 19.1

Logic Change CN2
321 J1
\square
654 J2
CN2 Input
PNP J 1 (2-3) y J2 (5-6)
NPN J 1 (1-2) y J2 (4-5)
Fig.. 19.2 Examples of connexion. PNP, NPN or contact closure

3.3 - Table of programmable functions

- № : Function number.
- Function : Function name.
- Description : Description and characteristics of the function.
- Activation :
- Falling edge : The operation is performed on a falling edge applied to the pin with respect to COMMON.
- Low level : The function remains activated while the corresponding pin is held at a low level with respect to COMMON.
- (*) Default factory configuration. It can be restored by programming all pins to ' 0 '.

0 to 9 : DISPLAY / MEMORY FUNCTIONS

№	Function	Description	Activation
0	None	Deactivated The pin has no function	None
1	Inhibit		
2	Inhibit		
3	PEAK	Recalls peak value. A new falling edge returns to normal reading	Falling edge
4	VALLEY	Recalls valley value. A new falling edge returns to normal reading	Falling edge
5	RESET PEAK/VALLEY	Clears the peak or valley memory (if the values are on display)	Falling edge
6	PEAK/VALLEY (*)	$1^{\text {st }}$ push recalls peak, $2^{\text {nd }}$ push recalls valley. Last push returns to the normal reading.	Falling edge
7	RESET (*)	In combination with (6) clears peak or valley memories	Falling edge combined with (6)
8	HOLD1	Holds the display while the outputs remain active	Low level
9	HOLD2 (*)	Holds the display, the BCD and the analog outputs	Low level

13 to 16 : FUNCTIONS ASSOCIATED WITH THE ANALOG OUTPUT

| $№$ | Function | Description | Activation |
| :--- | :--- | :--- | :--- | :--- |
| 13 | lnhibit | Puts the analog output to the zero state (0 V for $0-10 \mathrm{~V}, 4 \mathrm{~mA}$ for 4-20 mA) | Low level |
| 14 | ZERO ANA | Makes the analog output follow the peak value | Low level |
| 15 | ANA PEAK | Makes the analog output follow the valley value | Low level |
| 16 | ANA VALLEY | | |

17 to 23 : FUNCTIONS FOR USE WITH A PRINTER VIA THE RS OUTPUTS

№	Function	Description	Activation
17	PRINT NET	Prints the temperature and units.	Falling edge
18	Inhibit		
19	Inhibit		
20	PRINT SET1	Prints the setpoint1 value and its output status.	Falling edge
21	PRINT SET2	Prints the setpoint2 value and its output status.	Falling edge
22	PRINT SET3	Prints the setpoint3 value and its output status.	Falling edge
23	PRINT SET4	Prints the setpoint4 value and its output status.	Falling edge

24 to 25 : FUNCTIONS ASSOCIATED WITH THE SETPOINTS AND RS OUTPUTS

$№$	Function	Description	Activation
24	FALSE SETPOINTS	Exclusively for instruments WITHOUT relays/transistors control outputs card. Allows programming and operation of 4 setpoints without physical output.	Low level
25	RESET SETPOINTS	Exclusively for instruments with 1 or more setpoints programmed as "latched setpoints" (That is, the setpoints that once energized remain on the ON status although the alarm condition disappears). Resets the latched setpoints.	Falling edge

26 to 29 : SPECIAL FUNCTIONS

№	Function	Description	Activation
26	Inhibit		
27	Inhibit		
28	SEND ASCII	Transmits the four last digits of the display to a remote ASCII indicator. By holding the input to a low level, transmission takes place every second.	Falling edge / Low level
29	Deactivate Setpoints	Deactivates the activity of the setpoints and leaves the output at still.	

Note : function from 10 to 12 are inhibited

3.4 - Program remote inputs

This menu allows selecting the logic function for PIN 1. Available functions are represented by a number from 0 to 29 . Consult tables to find the number corresponding to the desired function. The instructions given below apply to pin function 1 . Follow the same procedure to configure the rest of the pins.

[22.1] Logic functions module

From the run mode, press ENTER to get access to the programming mode (the display
 shows -Pro-). Press repeatedly the
\longrightarrow key until the indication shown in figure 22.1 appears on the display. This module provides four menus for programming the logic functions to input pins $1,2,4$ and 5 of the rear CN2 connector. Press ENTER to access to the first menu (InP-1, corresponding to PIN1). The different menus appear by pressing the $>$ key.

ENTER To accede the logic functions configuration.
(ESC To exit from this module and return to the run mode.

MENU 6A PROGRAM PIN 1

MENU 6B
PROGRAM PIN 2

MENU 6AB PROGRAM PIN 4

MENU 6
PROGRAM PIN 5

MENU 6A - PI N 1 programming

This menu allows selecting the logic function for PIN 1. Available functions are represented by a number from 0 to 29. Consult tables to find the number corresponding to the desired function (pages $21 \& 22$). The instructions given below apply to pin function 1 . Follow the same procedure to configure the rest of the pins.

[23.1] Menu PI N 1

The figure 23.1 shows the indication ($\mathbf{I n P} \mathbf{- 1}$) corresponding to the configuration menu for the PIN 1 function. Press the ENTER key to accede this configuration.

ENTER To accede to the programming of the PIN 1 function.
To skip over this menu and go to PIN 2.
ESC To exit from the programming mode without saving changes.

Choose the function number [0-29], according to the table.
\triangle To change number (hold down to increment automatically).
Enter To save the entry into the memory and return to the run mode.
(ESC
To exit from the programming mode without saving changes.

3.5 - Programming lock out / access levels

In the RUN mode pulse the ENTER key during 3 second to accede to the lock menu (diagram). The instrument has an original lock code which is "0000". By using the Δ and \triangle keys, it is possible to enter a new lock code. If the introduced code is false, the instrument goes back in RUN mode. When the display shows "LiSt " pulse \square to change the code. Keep your new code in a secure place! It is possible to lock totally or partially the instrument's functions. " 1 " means lock whereas " 0 " means unlock. After pressing the last ENTER, the instrument saves its new configuration. Pulse ESC to return to RUN mode without saving the configuration.

4. OUTPUT OPTI ONS

Optionally, model Alpha-T can incorporate one or several output options for communications (this output should never be connected to the telephone lines) or control including :

- Control and processing of limit values via ON/OFF logic outputs (2 relays, 4 relays, 4 NPN outputs or 4 PNP outputs) or proportional output ($4-20 \mathrm{~mA}$ or $0-10 \mathrm{~V}$).

ANA Analogue 4-20 mA, 0-10 V
2RE 2 SPDT relays 8 A
4RE 4 SPST relays 5 A
4OP 4 open-collector NPN outputs
40PP 4 open-collector PNP outputs

- Communication, data transmission and remote programming via serial interface.

RS2	Serial RS232C
RS4	Serial RS485
BCD	BCD $24 V / T T L$

All options are opto isolated from signal ground.
The output cards are easily installed on the meter's main board by means of plug-in connectors. Complete configuration of the outputs is provided by software routines which are accessible after installing the options.

The figure next page shows the different locations of the plugin output cards. Each location corresponds to a specific function: setpoints, analogue and serial outputs.

The options 2RE, 4RE, 4OP and 4OPP are installed in the M5 connector.
The ANA option is installed in the M4 connector.
The options RS2 and RS4 are installed in the M1 connector.
Up to three output options can be present at a time and operate simultaneously, but only one from each category:

- ANALOGUE
- RS232C or RS485
- 2 RELAYS, 4 RELAYS, 4 PNP or 4 NPN

The BCD output is exclusive and do not allow installation of any other card. This option is connected to the main board by means of a 18-pin FLAT cable.

For more detailed information on characteristics, applications, mounting and programming, please refer to the specific manual supplied with each option.

4.1 New Functions

The new ALPHA-P provides improved functionality and incorporates new functions from which the following refer to the output options:

RESET CONFI GURATI ON

To restore the original configuration, press ENTER and RESET at the same time during 5 seconds. The lock code will also be put to zero.

SETPOI NTS

1. Each setpoint can be programmed for auto reset or latched operation. Latched setpoints require a manual reset to deactivate (see logic function 25, page 21). This may be useful in installations where permanent visual control is not made.
2. Each setpoint can be programmed to activate on either the measured net value, gross value, the peak or the valley.
3. Each setpoint may be programmed to blink the display when alarm is active. The LED indicator still lights in either case.
4. Quick access to program the setpoint values.
5. Activate or deactivate relay / opto (+LED) via an order from rs232C or rs485.
This function is available by introducing " 3 " in the first digit of the parameter mode setpoints (3B ModE).

In this configuration the rest of the options (HI-LO, RET-HYS...) are deactivated except the blink option (last digit of the parameter).

Once activated, these options does not deactivate by overflow or by programming, it only wait an order via RS2 or RS4.

RS232

Compatible with ModBus-RTU protocol (see ModBus manual).

RS485

This output can be used to print several data on the panel printer DITEL Print K180 (see logic functions page 29).

Once chosen the print function, the next step presents on / off to activate the function TIME which prints the time and date.

Compatible with ModBus-RTU protocol (see ModBus manual).

OUTPUT SERIE

The function 10 (write) is now available in the ModBus protocol, whereas the 01 and $0 F$ are no longer available.

New functions:

Command	Function
Orders Activate setpoint $\mathrm{n} \cong \#$ a\# Deactivate setpoint n $\#$ d \#	

Parameter Modification	
S\#	Change the value of setpoint no\# without saving it

ANALOGICAL

See remote inputs, page $20 \& 21$.

BCD

See remote inputs, page $20 \& 21$.

5. TECHNI CAL SPECI FICATI ONS

INPUT SIGNAL

- Configuration \qquad differential asymmetrical
- Cold junction compensation $\ldots-10{ }^{\circ} \mathrm{C}$ to $+60{ }^{\circ} \mathrm{C}$
- Pt100 excitation current $<1 \mathrm{mADC}$
- Max. cable resistance $40 \Omega /$ cable (balanced)

ACCURACY

- Max. error \qquad see table
- Cold junction coefficient.............. $\pm\left(0.05{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}+0.1{ }^{\circ} \mathrm{C}\right)$
- Temperature coefficient. $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
- Warm-up 10 minutes

FUSES (DIN 41661) - recommended

- Alpha-T (230/115V AC)

F 0.2A/ 250V

- Alpha-T1 (10-30V DC) F 2A/ 250V
- Alpha-T2 (24/48V AC) F 0.5A/ 250V

Input	$\begin{aligned} & \hline \text { Range } \\ & (0.1 \text { o) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Resolution } \\ (0.10) \\ \hline \end{gathered}$	Range (10)	Resolution $\left(1^{0}\right)$
TC J	$\begin{aligned} &-50.0 \text { to } \\ &+800.0 \circ \end{aligned}$	0.4\% R $\pm 0.6{ }^{\circ} \mathrm{C}$	$\begin{aligned} &-50 \text { to } \\ &+800 \stackrel{\circ}{ } \mathrm{C} \\ & \hline \end{aligned}$	0.4\% R $\pm 1{ }^{\circ} \mathrm{C}$
	$\begin{array}{r} -58.0 \text { to } \\ +1472.0 \text { ㅇF } \end{array}$	0.4\% R ± 1 - ${ }^{\text {F }}$	$\begin{gathered} -58 \text { to } \\ +1472 \text { ㅇF } \end{gathered}$	0.4\% $\mathrm{R} \pm 2$ - F
TC K	$\begin{array}{r} -50.0 \text { to } \\ +1200.0 \bigcirc \mathrm{C} \\ \hline \end{array}$	0.4\% R $\pm 0.6{ }^{\circ} \mathrm{C}$	$\begin{array}{r} -50 \text { to } \\ +1200 \stackrel{\circ}{ } \mathrm{C} \\ \hline \end{array}$	0.4\% R $\pm 1{ }^{\circ} \mathrm{C}$
	$\begin{array}{r} -58.0 \text { to } \\ +2192.0 \bigcirc \mathrm{~F} \\ \hline \end{array}$	0.4\% R ± 1 - ${ }^{\text {F }}$	$\begin{array}{r} -58 \text { to } \\ +21920 \mathrm{~F} \\ \hline \end{array}$	0.4\% $\mathrm{R} \pm 2$ - F
TC T	$\begin{array}{r} -150.0 \text { to } \\ +400.0 \cong{ }^{\circ} \mathrm{C} \\ \hline \end{array}$	0.4\% R $\pm 0.6{ }^{\circ} \mathrm{C}$	$\begin{aligned} & -150 \text { to } \\ & +400 \cong \mathrm{C} \\ & \hline \end{aligned}$	0.4\% R $\pm 1{ }^{\circ} \mathrm{C}$
	$\begin{array}{r} -238.0 \text { to } \\ +752.0 \cong \mathrm{~F} \\ \hline \end{array}$	0.4\% R ± 1 º ${ }^{\text {F }}$	$\begin{aligned} & \hline-238 \text { to } \\ & +752 \bigcirc \mathrm{~F} \\ & \hline \end{aligned}$	0.4\% $\mathrm{R} \pm 2$ - F
TC R	$\begin{gathered} -50.0 \text { to } \\ 1700.0{ }^{\circ} \mathrm{C} \end{gathered}$	0.5\% R ± 2 으	$\begin{gathered} -50 \text { to } \\ 1700 \stackrel{\circ}{ } \mathrm{C} \end{gathered}$	0.5\% R $\pm 4 \varrho^{\circ} \mathrm{C}$
	$\begin{gathered} -58.0 \text { to } \\ +3092.0 \text { ㅇF } \\ \hline \end{gathered}$	0.5\% R $\pm 4{ }^{\circ} \mathrm{F}$	$\begin{array}{r} -58 \text { to } \\ +3092 \text { ㅇF } \\ \hline \end{array}$	0.5\% $\mathrm{R} \pm \mathrm{T}^{\circ} \mathrm{F}$
TC S	$\begin{gathered} -50,0 \text { to } \\ 1700,0 \cong \mathrm{C} \\ \hline \end{gathered}$	0.5\% R ± 2 º ${ }^{\text {C }}$	$\begin{gathered} -50 \text { to } \\ 1700 \stackrel{\circ}{ } \mathrm{C} \\ \hline \end{gathered}$	0.5\% R $\pm 4{ }^{\circ} \mathrm{C}$
	$\begin{array}{r} -58.0 \text { to } \\ +3092.0 \text { ㅇ } \mathrm{F} \\ \hline \end{array}$	0.5\% R ± 4 - ${ }^{\text {F }}$	$\begin{array}{r} -58 \text { to } \\ +30920 \mathrm{~F} \\ \hline \end{array}$	0.5\% R ± 7 - F
TC E	$\begin{gathered} -50.0 \text { to } \\ 1000.0{ }^{\circ} \mathrm{C} \end{gathered}$	0.4\% R $\pm 1{ }^{\circ} \mathrm{C}$	$\begin{gathered} -50 \text { to } \\ 1000 \stackrel{\circ}{ } \mathrm{C} \\ \hline \end{gathered}$	0.4\% $\mathrm{R} \pm 2$ º
	$\begin{gathered} -58.0 \text { to } \\ +1832.0 \text { ㅇF } \end{gathered}$	0.4\% R ± 2 아	$\begin{gathered} -58 \text { to } \\ +1832 \text { ㅇF } \end{gathered}$	0.4\% R ± 4 - ${ }^{\text {F }}$
Pt100	$\begin{aligned} & -100.0 \text { to } \\ & +800.0 \stackrel{\circ}{ } \text { C } \end{aligned}$	0.2\% R $\pm 0.6{ }^{\circ} \mathrm{C}$	$\begin{gathered} \hline-100 \text { to } \\ +800{ }^{\circ} \mathrm{C} \end{gathered}$	0.2\% $\mathrm{R} \pm 1{ }^{\circ} \mathrm{C}$
	$\begin{gathered} -148.0 \text { to } \\ +1472.0 \text { ㅇF } \end{gathered}$	0.2\% $\mathrm{R} \pm 1{ }^{\text {o }} \mathrm{F}$	$\begin{gathered} \hline-148 \text { to } \\ +1472 \bigcirc \mathrm{~F} \end{gathered}$	0.2\% R ± 2 아

A/D CONVERSION

- Technique dual slope
- Resolution (± 16 bit)
- Conversion rate 16/s

DISPLAY

- Main \qquad 5 digits 14 mm red
- Auxiliary 1 digit 7.6 mm green
- Decimal point fixed
- LED's \qquad 14 (programming and control)
- Display update time 125 ms
- Positive over range +oVFLo
- Negative over range -oVFLo

ENVIRONMENTAL

- Indoor use
- Operating temp.
$-10{ }^{\circ} \mathrm{C}$ to $60{ }^{\circ} \mathrm{C}$
- Storage temperature. $-25{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$
- Relative humidity $<95 \%$ at $40{ }^{\circ} \mathrm{C}$
- Max. altitude 2000 meters

MECHANICAL

- Dimensions
$96 \times 48 \times 120 \mathrm{~mm}$
- Panel cut out. $.92 \times 45 \mathrm{~mm}$
- Weight 600 g
- Case material \qquad UL 94 V-0 rated polycarbonate

POWER SUPPLY

- AC voltages..... $115 \mathrm{~V} / 230 \mathrm{~V}, 24 \mathrm{~V} / 48 \mathrm{~V}(\pm 10 \%) 50 / 60 \mathrm{~Hz} \mathrm{AC}$
- DC voltages... 10-30V DC
- Consumption 5W (without options), 10W (max.)

5.1 - Dimensions and mounting

To install the instrument into the panel, make a $92 \times 45 \mathrm{~mm}$ cut-out. Slide the sealing gasket over the rear of the unit to the bezel and insert the unit into the panel from the front.

Place the fixing clips on both sides of the case and slide them over the guide tracks until they touch the panel at the rear side.

Press slightly to fasten the bezel to the panel and secure the clips in the slots of the case.

To take the instrument out of the panel, pull outwards the rear tabs of the fixing clips to disengage and slide them back over the case.

CLEANING: The frontal cover should be cleaned only with a soft cloth soaked in neutral soap product.

DO NOT USE SOLVENTS

NOTES

NOTES

The instruments are warranted against defective materials and workmanship for a period of three years from date of delivery.

If a product appears to have a defect or fails during the normal use within the warranty period, please contact the distributor from which you purchased the product.

This warranty does not apply to defects resulting from action of the buyer such as mishandling or improper interfacing.

The liability under this warranty shall extend only to the repair of the instrument. No responsibility is assumed by the manufacturer for any damage which may result from its use.

All the DITEL products benefit from an unlimited and unconditional warranty of THREE (3) years from the date of their purchase. Now you can extend this period of warranty up to FIVE (5) years from the product commissioning, only by fulfilling a form.

Fill out the form from our website:
http:/ / www.ditel.es/ warranty

7. CERTI FI CATE OF CONFORMI TY

Manufacturer: DITEL - Diseños y Tecnología S.A.

Address : Travessera de les Corts, 180 08028 Barcelona ESPAÑA

Declares, that the product :
Description: Digital panel meter

Model :
ALPHA-T

Conforms with the directives :
EMC 89/336/CEE LVD 73/23/CEE

Date: March $20^{\text {th }}, 2003$
Signed: José M. Edo

```
Applicable Standards: EN50081-1 Generic emission
    EN55022/CISPR22 Class B
Applicable Standards : EN50082-1 Generic immunity
    IEC1000-4-2 Level 3 Criteria B
    Air Discharge 8kV
    Contact Discharge 6kV
    IEC1000-4-3 Level 2 Criteria A
    3V/m 80..1000MHz
    IEC1000-4-4 Level 2 Criteria B
    1kV Power Lines
    0.5kV Signal Lines
Applicable Standards : EN61010-1 Generic Safety
    IEC1010-1 Installation Category II
    Transient Voltages <2.5kV
    Pollution Degree 2
    Conductive pollution excluded
    Insulation Type
    Enclosure: Double
    Inputs/Outputs: Basic
```

Charge: Technical Manager

Applicable Standards: EN55022/CISPR22	EN50081-1 Generic emission Class B
Applicable Standards: IEC1000-4-2	EN50082-1 Generic immunity Level 3 Criteria B Air Discharge 8kV Contact Discharge 6kV
IEC1000-4-3	$\begin{array}{ll}\text { Level } 2 & \text { Criteria } \mathrm{A} \\ 3 \mathrm{~V} / \mathrm{m} & 80 . .1000 \mathrm{MHz}\end{array}$
IEC1000-4-4	Level 2 Criteria B 1kV Power Lines 0.5kV Signal Lines
Applicable Standards: IEC1010-1	EN61010-1 Generic Safety Installation Category II Transient Voltages <2.5kV Pollution Degree 2 Conductive pollution excluded Insulation Type Enclosure: Double Inputs/Outputs: Basic

I NSTRUCTI ONS FOR THE RECYCLI NG

This electronic instrument is covered by the 2002/ 96/ CE European Directive so, it is properly marked with the crossed-out wheeled bin symbol that makes reference to the selective collection for electrical and electronic equipment which indicates that at the end of its lifetime, the final user cannot dispose of it as unsorted municipal waste.

In order to protect the environment and in agreement with the European legislation regarding waste of electrical and electronic equipments from products put on the market after 13 August 2005, the user can give it back, without any cost, to the place where it was acquired to proceed to its controlled treatment and recycling.

DISEÑOS Y TECNOLOGIA, S.A.

Polígono Industrial Les Guixeres
C/ Xarol 8 C
08915 BADALONA-SPAIN
Tel : +34-93 3394758
Fax: +34-93 4903145
E-mail : dt|@ditel.es
www.ditel.es

[^0]: To guarantee the meter's technical specifications, it is recommended to recalibrate the meter at periodical intervals according to the ISO9000 standards for the particular application operating criteria. Calibration should be performed at the factory or in a qualified laboratory.

[^1]: (ENTER Save changes and return to the run mode.
 ESC Exit from this routine without saving changes and return to the run mode.

