

DITEL: PRODUCTS: DIGITAL STARS: 8000PRC

I NPUT CONFI GURATI ON

The type of input is factory-set upon reques but can later be modified by changing the value of the resistor R1 connected at the input option.

Input 0-1mA: R1 = 1000 ohm + jumper J1
Input 0-5mA: R1 = 200 ohm + jumper J1
Input 0-20mA: R1 = 50 ohm + jumper J1
Input 4-20mA: R1 = 50 ohm + jumper J 1

Voltage inputs are determined according to the process of display range configuration. In such a case eliminate the solder jumper J1.

The exication is jumper-selectable:

Common excitation / 2 or 3 wire connection

Exc. $=24 \mathrm{~V}: \mathrm{J} 2(1-2)+\mathrm{J} 4+\mathrm{J} 5(2-3)$
Exc. $=6 \mathrm{~V}: \mathrm{J} 2(2-3)+\mathrm{J} 4+\mathrm{J} 5(2-3)$
Exc. $=5 \mathrm{~V}: \mathrm{J} 2(2-3)+\mathrm{J} 3+\mathrm{J} 4+\mathrm{J} 5(2-3)$

Floating excitation / 4 wire connection

Exc. $=24 \mathrm{~V}: \mathrm{J} 2(1-2)+\mathrm{J} 5(1-2)$
Exc. $=6 \mathrm{~V}: \mathrm{J} 2(2-3)+\mathrm{J} 5(1-2)$
Exc. $=5 \mathrm{~V}: \mathrm{J} 2(2-3)+\mathrm{J} 3+\mathrm{J} 5(1-2)$

RANGE CONFIGURATI ON

Model 816S XYC9 process indicators provide internal plug-in jumpers to allow easy scaling for readout any process variable directly in engineering units.

Calculate the values of N (gain) and P (zero offset) by following the process described next page and find out in tables (1) and (2) the adequate jumper wiring of groups S1 to S5.

Once the required range has been setup, recalibrate the instrument by applying a known signal (approximately full-scale) and adjusting zero and span potentiometers.

TABLES OF CONFI GURATI ON

TABLE (1) GAIN

-N-	S3	S4	-N-	S3	S4
3618		1/2	400		-
3224		1/4	364	12	11
2939		13	288	13	-
2406		12	212	13/4	
2012	-	11	145	12	-
1810	J	1/2	110	12/3	
1612	14	1/4	96	12/3/4	-
1470	14	13	70	11	1/2/3/4
1203	14	12	58	1	1/2/3
1006	14	11	46	11	12/3
800	-	-	37	1	1/2
724	13	11	30	11	13
637	13/4	12	24	1	12
532	12	13	20	11	1
450	12/4	13	8	11	-

TABLE (2) ZERO OFFSET

-P-	S1
-2000 a -1230	J1/2
-1229 a -615	1
-614 a -150	12
-150 a +150	-
+150 a +614	J 3
+615 a +1229	J 4
+1230 a +2000	J3/4

Note: The values of N given in the table are absolute and must be applied having no regard to the sign obtained in calculation.

JUMPER CONFIGURATI ON

JUMPER S5 (SIGN OF GAIN)
For $\mathrm{N}>0$, plug in jumpers $a d+b c$
For $\mathrm{N}<0$, plug in jumpers $\mathrm{ab}+\mathrm{dc}$

JUMPERS S3 Y S4 (GAIN)
Place the appropriate jumpers according to the absolute value of N in table (1). If an intermediate value of the table is obtained, take the nearest one.

JUMPERS S2 (SPAN POTENT. MARGIN)
It is normally factory-ser in the J1 position. In case that, after the board configuration, the span adjustment margin is located at one end of the potentiometer, place the jumper 52 in the J2 position thus increasing the margin.

JUMPERS S1 (ZERO OFFSET)

Plug in the appropriate jumpers so that the value of P (with its sign) is comprised between the margins indicated in table.

CONFI GURATI ON PROCEDURE

Consider VSE as the maximun value and VIE as the minimum value of the input signal, in volts. VSE - VIE $=1$ (for input options $0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}, 0$ 20mA)
VSE - VIE $=0.8$ (for $4-20 \mathrm{~mA}$)

GAI N CALCULATI ON

Apply the formula:
$\mathrm{N}=(\mathrm{VSD}-\mathrm{VID}) /(\mathrm{VSE}-\mathrm{VIE})$

Where VSD is the display value corresponding to the top of the input signal (VSE) and VID is the value corresponding to the bottom of the input signal.

The display value must be taken with its sign and disregarding decimal point, that is; a display of 100.0 shall be considered in calculation as 1000 .

ZERO OFFSET CALCULATI ON

For current inputs and $\mathbf{N}>\mathbf{0}$:
$\mathrm{P}=\mathrm{VSD}-\mathrm{N}$

For current inputs and $\mathbf{N}<\mathbf{0}$:
$P=-(V S D-N)$

For voltage inputs and $\mathbf{N}>\mathbf{0}$:
P = VSD - N*VSE

For voltage inputs and $\mathbf{N}<\mathbf{0}$:
$P=-\left(V S D-N^{*} V S E\right)$
(VSD and N with its corresponding sign).
With these obtained values of N and P, find out in tables (1) and (2) the appropriate jumper wiring for the groups S1, S3 and S4.

EXAMPLES OF CONFI GURATI ON

1./ It is required to have a display readout from $-10.0^{\circ} \mathrm{C}$ to $+200.0^{\circ} \mathrm{C}$
corresponding to a standard input of $4-20 \mathrm{~mA}$.

VSD $=2000$
VID $=-100$

Gain:

$\mathrm{N}=(2000-(-100)) / 0.8=2625$

Zero Offset:

$P=2000-2625=-625$

For $\mathbf{N}=2625$ (positive), the nearest value listed in table (1) is 2406; plug in the jumperJ 2 in $\mathbf{S 4}$ and none in S3

For $\mathbf{P}=\mathbf{- 6 2 5}$ plug in the jumper $\mathbf{J} \mathbf{1}$ in $\mathbf{S 1}$ according to table (2).
2./ With a standard input span form 0 to 10 V , it is required to obtain a display span form $50.0^{\circ} \mathrm{C}$ a $150.0^{\circ} \mathrm{C}$.
$V S D=1500$
VID $=500$

Gain:
$N=(1500-500) / 10-0=100$

Zero Offset:

$P=1500-100 * 10=500$

For $\mathbf{N}=\mathbf{1 0 0}$ (positive) plug in the jumpers J2, J3 and J4 in S3 y ninguno en S4 according to the table (1) (the nearest value is 96).
Place also the jumpers ($\mathbf{a d + b}$) of group S5.

For $\mathbf{P}=\mathbf{5 0 0}$ plug in the jumper $\mathbf{J} \mathbf{3}$ in $\mathbf{S 1}$ according to the talbe (2).

NOTE: With $0-100 \mathrm{mV}$ input, the value of N may exceed from 4000. In such a case, replace R2of 330kohm for a resistor whose value is obtained from this formula:
R2 (kohm) $=(50000 / \mathrm{N})$
Place also the jumper J 1 in S4 and no one in S3. For the rest of the configuration, follow the normal process.

Warranty:

Press the icon to see it.

