

DITEL: PRODUCTS: DIGITAL STARS: 800PRC

DESCRI PTI ON

Model 8110 XY09 and 8210 XY09 process indicators provide internal plug-in jumpers to allow easy scaling for direct readout any input parameter in engineering units.

In order to determinated the adequate jumper wiring, calculate the values of N (gain) and P (zero offset) by using the formulas given next page and find out in tables [1] and [2] the jumper configuration for groups S1, S3 and S4.

Once the required range has been set up, recalibrate the instrument by applying a know signal (appoximately full-scale) and adjusting zero and span potentiometers to the desired display reading.

J UMPER CONFI GURATI ON

JUMPERS S5 (SIGN OF GAIN)
For $N>0$, plug in jumpers $a d+b c$
For $\mathrm{N}<0$, plug in jumpers $a b+d c$
JUMPERSS3 AND S4 (GAIN)
Place the appropiate jumpers according to the absolute value of N in table [1]. If an intermediate value of the table is obtained, take always the nearest one.

JUMPERS S2 (SPAN POTENT.MARGIN)
It is normally factory-set in the position J 2 and there is no need to change it. In case that, after the board configuration, the span adjustment margin is located at one end of the potentiometer, place the jumper $S 2$ in the position J 3 thus increasing the margin.

JUMPERS S1 (ZERO OFFSET) Plug in the appropiate jumper so then the value of P (with its sign) is comprised between the margins indicated in table [2].

TABLES OF CONFI GURATI ON

TABLE (1) GAI N

-N-	S3	S4	-N-	S3	S4
3618		1/2	400		
3224		1/4	364	12	1
2939		13	288	13	
2406		12	212	13/4	
2012		1	145	12	
1810	14	1/2	110	12/3	
1612	14	1/4	96	12/3/4	-
1470	14	13	70	1	1/2/3/4
1203	14	12	58	1	1/2/3
1006	14	11	46	1	J2/3
800	-		37	1	1/2
724	13	11	30	11	13
637	13/4	12	24	1	12
532	12	13	20	1	1
450	12/4	13	8	1	-

TABLE (2) ZERO OFFSET

-P-	S1
-2000 a -1230	1/2
-1229 a -615	1
-614 a -150	12
-150 a +150	
+150 a +614	13
+615 a +1229	4
+1230 a +2000	13/4

Note:The values of N given in the table are absolute and must be applied having no regard to the sign obtained in calculation.

CONFI GURATI ON PROCEDURE FOR 0-1V, 0-5V, 0-10V, 15V INPUTS

Take VSE as the maximum value and VIE as the minimum value of the input signal, in volts. GAI N CALCULATI ON:
Apply the formula:
$\mathrm{N}=(\mathrm{VSD}-\mathrm{VID}) /(\mathrm{VSE}-\mathrm{VIE})$
Where VSD is the display value corresponding to the top of the input signal (VSE) and VID is the value corresponding to the bottom of the input signal (VIE)
The display value must be taken with its sign and disregarding decimal point, thet is; a display of 100.0 shall be considered in calcutation as 1000 .

ZERO OFFSET CALCULATION

For positive values of N , apply the formula:
$P=V S D-N * V S E$
For negative values of N , apply: $\mathrm{P}=-(\mathrm{VSD}-\mathrm{N} * \mathrm{VSE})$
(VSD and N with its corresponding sign).
With this obtained values of N and P, find out in tables [1] and [2] the appropiate jumper wirirng for the groups S1, S3 and S4.

EXEMPLE OF CONFI GURATI ON

It is required to have a display span of $50.0^{\circ} \mathrm{C}$ to $150.0^{\circ} \mathrm{C}$ corresponding to a standard signal span of $0-10 \mathrm{~V}$.

VSD $=1500$
VID $=500$

Gain

$\mathrm{N}=(1500-500) /(10-0)=100$

Zero offset

$\mathrm{P}=1500-100 * 10=500$
For $\mathbf{N}=\mathbf{1 0 0}$ (positive) plug in the jumpers $\mathbf{J} \mathbf{2}, \mathbf{J} \mathbf{3}$ and $\mathbf{J} \mathbf{4}$ in $\mathbf{S 3}$ and no
jumper in S4 according to the table [1] (the nearest value is 96).
For $\mathbf{P}=\mathbf{5 0 0}$ plug in the jumper $\mathbf{J} \mathbf{3}$ in $\mathbf{S 1}$ according to table[2].

CONFIGURATI ON PROCEDURE FOR 0-1, 0-5, 0-20 AND 4-20mA INPUT

$A=1$ (for $0-1 \mathrm{~mA}, 0-5 \mathrm{~mA}$ or $0-20 \mathrm{~mA}$ input)
$A=0.8$ (for $4-20 \mathrm{~mA}$ input)

GAI N CALCULATION:

Apply the formula:
$N=(V S D-V I D) / A$
Where BSD is the display value corresponding to the top of the input signal (VSE) and VID is the value corresponding to the bottom of the input signal (VIE).
The display value must be taken with its sign and disregarding decimal point, that is; a display of 100.0 shall be considered in calculation as 1000 .

ZERO OFFSET CALCULATI ON

For positive values of N , apply the formula:
$\mathrm{P}=\mathrm{VSD}-\mathrm{N}$
For negative values of N , apply the formula:
$P=-(V S D-N)$
(VSD and N with its sign).
With these values of N and P, find out in tables [1] and [2] the appropiate jumper configuration of groups S1, S3 and S4.

EXAMPLE OF CONFIGURATI ON

It is required to have a display readout from $-10.0^{\circ} \mathrm{C}$ to $+200.0^{\circ} \mathrm{C}$ corresponding to a standard input of $4-20 \mathrm{~mA}$.

VSD $=2000$
VID $=-100$

Gain:

$N=(2000-(-100)) / 0.8=2625$

Zero offset

$P=2000-2625=-625$
For $\mathbf{N}=\mathbf{2 6 2 5}$ (positive), the nearest value listed in table [1] is 2406; place the jumper $\mathbf{J} \mathbf{2}$ in $\mathbf{S 4}$ and no one in $\mathbf{5 3}$

Place also the jumpers ($\mathbf{a d} \mathbf{+} \mathbf{b c}$) of group S5. For $\mathbf{P}=\mathbf{- 6 2 5}$ place the jumper $\mathbf{J 1}$ in $\mathbf{S 1}$ according to the table [2].

Warranty:

Press the icon to see it.

